855 research outputs found

    Non-linear control algorithms for an unmanned surface vehicle

    Get PDF
    Although intrinsically marine craft are known to exhibit non-linear dynamic characteristics, modern marine autopilot system designs continue to be developed based on both linear and non-linear control approaches. This article evaluates two novel non-linear autopilot designs based on non-linear local control network and non-linear model predictive control approaches to establish their effectiveness in terms of control activity expenditure, power consumption and mission duration length under similar operating conditions. From practical point of view, autopilot with less energy consumption would in reality provide the battery-powered vehicle with longer mission duration. The autopilot systems are used to control the non-linear yaw dynamics of an unmanned surface vehicle named Springer. The yaw dynamics of the vehicle being modelled using a multi-layer perceptron-type neural network. Simulation results showed that the autopilot based on local control network method performed better for Springer. Furthermore, on the whole, the local control network methodology can be regarded as a plausible paradigm for marine control system design. © 2014 IMechE

    Hitting time for quantum walks on the hypercube

    Full text link
    Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. To be analogous to the hitting time for a classical walk, the quantum hitting time must involve repeated measurements as well as unitary evolution. We derive an expression for hitting time using superoperators, and numerically evaluate it for the discrete walk on the hypercube. The values found are compared to other analogues of hitting time suggested in earlier work. The dependence of hitting times on the type of unitary ``coin'' is examined, and we give an example of an initial state and coin which gives an infinite hitting time for a quantum walk. Such infinite hitting times require destructive interference, and are not observed classically. Finally, we look at distortions of the hypercube, and observe that a loss of symmetry in the hypercube increases the hitting time. Symmetry seems to play an important role in both dramatic speed-ups and slow-downs of quantum walks.Comment: 8 pages in RevTeX format, four figures in EPS forma

    Application of artificial neural networks to weighted interval Kalman filtering

    Get PDF
    The interval Kalman filter is a variant of the traditional Kalman filter for systems with bounded parametric uncertainty. For such systems, modelled in terms of intervals, the interval Kalman filter provides estimates of the system state also in the form of intervals, guaranteed to contain the Kalman filter estimates of all point-valued systems contained in the interval model. However, for practical purposes, a single, point-valued estimate of the system state is often required. This point value can be seen as a weighted average of the interval bounds provided by the interval Kalman filter. This article proposes a methodology based on the application of artificial neural networks by which an adequate weight can be computed at each time step, whereby the weighted average of the interval bounds approximates the optimal estimate or estimate which would be obtained using a Kalman filter if no parametric uncertainty was present in the system model, even when this is not the case. The practical applicability and robustness of the method are demonstrated through its application to the navigation of an uninhabited surface vehicle. © IMechE 2014

    On the application of a hybrid ellipsoidal-rectangular interval arithmetic algorithm to interval Kalman filtering for state estimation of uncertain systems

    Get PDF
    Modelling uncertainty is a key limitation to the applicability of the classical Kalman filter for state estimation of dynamic systems. For such systems with bounded modelling uncertainty, the interval Kalman filter (IKF) is a direct extension of the former to interval systems. However, its usage is not yet widespread owing to the over-conservatism of interval arithmetic bounds. In this paper, the IKF equations are adapted to use an ellipsoidal arithmetic that, in some cases, provides tighter bounds than direct, rectangular interval arithmetic. In order for the IKF to be useful, it must be able to provide reasonable enclosures under all circumstances. To this end, a hybrid ellipsoidal-rectangular enclosure algorithm is proposed, and its robustness is evidenced by its application to two characteristically different systems for which it provides stable estimate bounds, whereas the rectangular and ellipsoidal approaches fail to accomplish this in either one or the other case

    A Robust Bearing Fault Detection and Diagnosis Technique for Brushless DC Motors Under Non-stationary Operating Conditions

    Get PDF
    Rolling element bearing defects are among the main reasons for the breakdown of electrical machines, and therefore, early diagnosis of these is necessary to avoid more catastrophic failure consequences. This paper presents a novel approach for identifying rolling element bearing defects in brushless DC motors under non-stationary operating conditions. Stator current and lateral vibration measurements are selected as fault indicators to extract meaningful features, using a discrete wavelet transform. These features are further reduced via the application of orthogonal fuzzy neighbourhood discriminative analysis. A recurrent neural network is then used to detect and classify the presence of bearing faults. The proposed system is implemented and tested in simulation on data collected from an experimental setup, to verify its effectiveness and reliability in accurately detecting and classifying the various faults

    Error tolerance of two-basis quantum key-distribution protocols using qudits and two-way classical communication

    Full text link
    We investigate the error tolerance of quantum cryptographic protocols using dd-level systems. In particular, we focus on prepare-and-measure schemes that use two mutually unbiased bases and a key-distillation procedure with two-way classical communication. For arbitrary quantum channels, we obtain a sufficient condition for secret-key distillation which, in the case of isotropic quantum channels, yields an analytic expression for the maximally tolerable error rate of the cryptographic protocols under consideration. The difference between the tolerable error rate and its theoretical upper bound tends slowly to zero for sufficiently large dimensions of the information carriers.Comment: 10 pages, 1 figur

    Mixing Times in Quantum Walks on Two-Dimensional Grids

    Full text link
    Mixing properties of discrete-time quantum walks on two-dimensional grids with torus-like boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.Comment: 11 page

    A Robust Navigation Technique for Integration in the Guidance and Control of an Uninhabited Surface Vehicle

    Get PDF
    In this paper, we propose a novel robust navigational approach to be integrated with the guidance and control systems of an uninhabitedsurface vehicle Springer. A weighted Interval Kalman Filter (wIKF) in used for waypoint tracking, and has been compared with that of one that uses a conventional Kalman Filter (KF) navigational design. The conventional KF fails to predict correctly the vehicle’s heading when there is unmodelled uncertainty of the sensing equipment, and thus would negatively affect the performance of subsequent navigation, guidance and control (NGC). While the proposed method using a wIKF technique enhances robustness with respect to erroneous modelling, and thus secures better accuracy and efficiency in completing a mission

    Subsea cable tracking by an unmanned surface vehicle

    Get PDF
    Subsea cable localisation is a demanding task that requires a lot of time, effort and expense. In the present paper the authors propose a methodology that is automated and inexpensive, based on magnetic detection from a small unmanned surface vehicle (USV) and the use of a batch particle filter (BPF) algorithm. A dynamic path planning algorithm for the USV is also developed so that adequate samples of the magnetic field readings can be gathered for processing by the BPF. All of these elements work together online as the cable is tracked, which was demonstrated in a simulated mission
    • …
    corecore